ООО «РОКСА ЭНТРАНС»

ЗАМОК ЭЛЕКТРОМАГНИТНЫЙ AL-200SH

Горизонтальная модификация Опытный образец.

ТУ 7399-007-38952051-06

Сертификат соответствия № РОСС RU.C305.H00510 НИЦ «ОХРАНА» ГУВО МВД РОССИИ

г. Москва, 2007 год www.entrance.roksa.ru e-mail: entrance@roksa.ru

1. Общие сведения

- 1.1 ЗАМОК предназначен для применения в системах контроля доступа, системах пожарной и охранно-пожарной сигнализации в качестве запорного устройства. Конструкция ЗАМКА ориентирована на врезной (скрытый) вариант монтажа.
- 1.2 ЗАМОК предназначен для эксплуатации внутри помещений для дверей, открывающихся как наружу, так и вовнутрь.
- 1.3 Работоспособность ЗАМКА обеспечивается при температуре от -10°C до +35°C и относительной влажности до 95%.
- 1.4 Пример записи при заказе: электромагнитный ЗАМОК для горизонтальной установки AL-200SH.

2. Технические характеристики

- 2.1 Масса основного комплекта поставки не более 1 кг.
- 2.2 Габаритные размеры корпусной части (длина \times ширина \times глубина) $167 \times 18 \times 17$ мм.
- 2.3 Габаритные размеры якорной части: 187×18×18,5 мм.
- 2.4 Габаритные размеры модуля управления: 88×23×18 мм.
- 2.5 Длина кабеля для подключения ЗАМКА не менее 0,25м.
- 2.6 Номинальное напряжение питания ЗАМКА 12 В от источника постоянного тока
- 2.7 Допустимое колебание напряжения электропитания +10% / -5 % от номинального значения.
- 2.8 Максимальное удерживающее усилие замка на сдвиг при попытке взлома двери не менее 2000 H.
- 2.9 Ток потребления в режиме Pull up (подброс) 0,9A, в режиме Hold (удержание) 0,22A.
- 2.9 Время работы режима Pull up 4-5 секунд.
- 2.10 Допустимая величина зазора между рабочими поверхностями корпусной и якорной частей 1,5 3,5 мм.

3. Комплектность

В основной комплект поставки входит:

-	корпусная часть	1 шт.
-	якорная часть	1 шт.
-	модуль управления	1 шт.
-	магнитоконтактный датчик (геркон) ИО-102-15/1	1шт.
-	регулировочные прокладки	4 шт.
-	инструкция по эксплуатации	1 шт.
-	упаковочная коробка	1 шт

4. Принцип действия

ЗАМОК состоит из корпусной и якорной частей. Корпусная часть монтируется горизонтально в дверной коробке, якорная часть - в двери. При закрытии двери подвижная пластина якорной части притягивается к рабочей поверхности корпусной части, при этом удерживающий выступ входит в соответствующее гнездо пластины якоря и блокирует дверь (рис. 1).

Удерживающее усилие замка в заблокированном положении определяется конструктивными размерами удерживающего выступа. При снятии напряжения питания ЗАМОК разблокируется, что приводит к отпиранию двери.

Управление замком осуществляется от внешнего малогабаритного модуля и выносного магнитоконтактного датчика (геркона). Модуль управления по сигналу магнитоконтактного датчика выполняет переключение обмоток замка при закрывании двери. Тем самым реализуется режим активного притягивания (подброса) якоря и режим его удержания в заблокированном положении. Режим «подброса» длится 4-5секунд, после чего происходит переключение в режим удержания с пониженным током потребления.

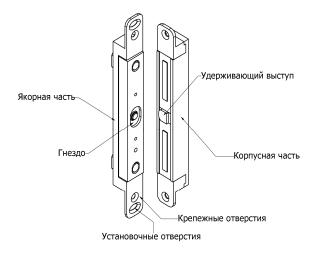
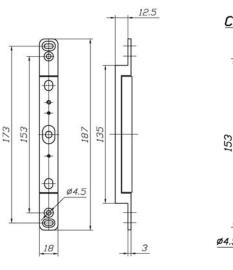


Рис.1


5. Указания по монтажу и эксплуатации.

5.1 Якорная часть ЗАМКА монтируется в гнезде в верхней части дверного полотна. Гнездо выполняется симметрично кромкам двери с учетом габаритно-установочных размеров якорной части (рис. 2). Рекомендуется гнездо делать на 2-5мм шире якоря, чтобы компенсировать погрешности

- монтажа в поперечном направлении за счет перемещения якорной части в пределах гнезда. При этом предварительное крепление якорной части рекомендуется выполнять через установочные овальные отверстия.
- 5.2 Корпусная часть ЗАМКА устанавливается в гнездо дверной коробки. Гнездо выполняется напротив якорной части с учетом габаритно-установочных размеров корпусной части (рис. 3) и расположения выводов управления. Удерживающий выступ на корпусной части должен быть ориентирован в направлении закрывания двери.
- 5.3 Точность расположения частей замка друг относительно друга должна быть: в продольном направлении (вдоль длинной стороны) 2-4мм, в поперечном направлении 1-2мм. В закрытом положении двери между рабочими кромками на удерживающем выступе и в гнезде должен сохраняться гарантированный зазор. При этом подвижная пластина якоря не должна защемляться из-за влияния уплотнения двери, деформации дверного полотна, неточной навески петель и других факторов создающих «отдачу» двери при закрывании (рис.4).

Якорная часть

Корпусная часть

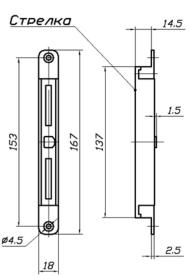


Рис. 2. Рис. 3.

Рис.4

Защемление запорной планки может также происходить, если сначала потянуть за ручку двери (с усилием больше 3-4 кгс), и лишь потом нажать кнопку выхода.

Если зазор между полотном двери и упором в дверной коробке (в закрытом положении двери) слишком большой, выступ может проскочить гнездо, и замок может не заблокироваться (рис.5).

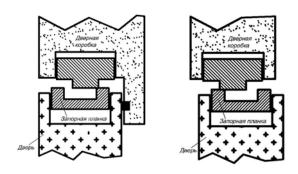


Рис.5

Положение якорной части замка в продольном направлении можно менять в пределах 2-3мм, за счет перемещения в овальных отверстиях крепежных фланцев. Это позволяет обеспечить необходимый зазор до момента окончательного закрепления замка. Если погрешности монтажа слишком велики и их компенсация за счет овальных отверстий не помогает, допускается развернуть корпусную часть замка в своем гнезде на 180 град.

5.4 Допустимый рабочий (эксплуатационный) ЗАЗОР между рабочими поверхностями якорной и корпусной частей после окончательного монтажа

ЗАМКА должен быть в пределах 1,5-3,5мм. При этом необходимо учитывать, что высота удерживающего выступа корпусной части составляет 1,5мм, поэтому при минимальном ЗАЗОРЕ, в процессе закрывания двери, выступ может слегка касаться поверхности пластины и скользить по ней. Необходимый ЗАЗОР обеспечивается за счет установки регулировочных прокладок из комплекта поставки (толщиной 0,5мм) под опорные поверхности крепежных угольников корпусной частей.

- 5.5 После установки ЗАЗОРА необходимо проверить надежность срабатывания замка. Проверку следует производить при закрытой двери. При включении замка подвижная пластина якорной части должна уверенно притягиваться к корпусной части и резко от нее отскакивать при выключении. При аварийном выключении питания замок должен автоматически разблокироваться.
- 5.6 Величину ЗАЗОРА и надежность срабатывания целесообразно периодически проверять. Рекомендуемая периодичность проверки - не реже одного раза в два месяца.
- 5.7 При монтаже корпусной части в глухое гнездо деревянной дверной рамы возможен нагрев корпуса замка до 55°C, что не влияет на функционирование замка.
- 5.8 Модуль управления (рис.6) размещается в любом удобном месте. Кожух, закрывающий печатную плату модуля, в комплект поставки не входит и заказывается отдельно. Длина соединительного кабеля от замка до модуля управления не ограничивается при условии обеспечения падения напряжения в проводах не более 0,5В в режиме «подброса» якоря. Допускается скрытая установка модуля внутри дверной коробки.
- 5.9 Для установки магнитоконтактного датчика (геркона) сверлятся два соосных отверстия в торце дверного полотна и в дверной коробке диаметром 6мм. Точность совпадения отверстий при закрытой двери должна обеспечивать уверенное срабатывание датчика. Для управления замком кроме геркона, входящего в комплект поставки, допускается использование герконов любых других типов с нормально замкнутыми контактами.

5.10 Схема соединения элементов замка показана на рис.7. Подключение выводов в паре - «красный»/«черный» к контактам модуля — произвольное. При замыкании контакта К1 замок блокирует дверь, при размыкании - разблокирует.

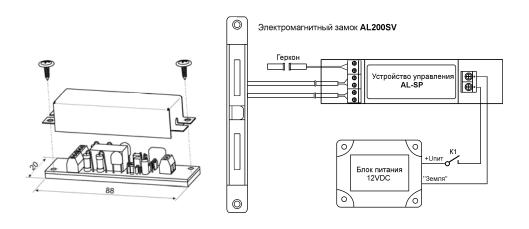


Рис. 6 Рис. 7

6. Условия хранения.

6.1 Электромагнитный замок AL-200SH должен храниться в отапливаемых и вентилируемых помещениях при температуре от +5 до +40°C при относительной влажности воздуха до 80% в упаковке поставщика.